Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 126(16): 2471-2479, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35418229

RESUMO

We report the structural evolutions of water networks and solvatochromic response of the CH3NO2- radical anion in the OH and CH stretching regions by analysis of the vibrational spectra displayed by cryogenically cooled CH3NO2-·(H2O)n=1-6 clusters. The OH stretching bands evolve with a surprisingly large discontinuity at n = 6, which features the emergence of an intense, strongly red-shifted band along with a weaker feature that appears in the region assigned to a free OH fundamental. Very similar behavior is displayed by the perdeuterated carboxylate clusters, RCO2-·(H2O)n=5-7 (R = CD3CD2), indicating that this behavior is a general feature in the microhydration of the triatomic anionic domain and not associated with CH oscillators. Electronic structure calculations trace this behavior to the formation of a "book" isomer of the water hexamer that adopts a configuration in which one of the water molecules resides in an acceptor-acceptor-donor (AAD) (A = acceptor, D = donor) H-bonding site. Excitation of the bound OH in the AAD site explores the local network topology best suited to stabilize an incipient -XO2H-OH-(H2O)2 intracluster proton-transfer reaction. These systems thus provide particularly clear examples where the network shape controls the potential energy landscape that governs water network-mediated, intracluster proton transfer. The CH stretching bands of the CH3NO2-·(H2O)n=1-6 clusters also exhibit strong solvatochromic shifts, but in this case, they smoothly blue-shift with increasing hydration with no discontinuity at n = 6. This behavior is analyzed in the context of the solute-ion polarizability response and partial charge transfer to the water networks.


Assuntos
Prótons , Água , Ânions , Dióxido de Carbono , Ligação de Hidrogênio , Dióxido de Nitrogênio , Análise Espectral , Água/química
2.
Nature ; 581(7808): 288-293, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433618

RESUMO

The hydrogen isotopes deuterium (D) and tritium (T) have become essential tools in chemistry, biology and medicine1. Beyond their widespread use in spectroscopy, mass spectrometry and mechanistic and pharmacokinetic studies, there has been considerable interest in incorporating deuterium into drug molecules1. Deutetrabenazine, a deuterated drug that is promising for the treatment of Huntington's disease2, was recently approved by the United States' Food and Drug Administration. The deuterium kinetic isotope effect, which compares the rate of a chemical reaction for a compound with that for its deuterated counterpart, can be substantial1,3,4. The strategic replacement of hydrogen with deuterium can affect both the rate of metabolism and the distribution of metabolites for a compound5, improving the efficacy and safety of a drug. The pharmacokinetics of a deuterated compound depends on the location(s) of deuterium. Although methods are available for deuterium incorporation at both early and late stages of the synthesis of a drug6,7, these processes are often unselective and the stereoisotopic purity can be difficult to measure7,8. Here we describe the preparation of stereoselectively deuterated building blocks for pharmaceutical research. As a proof of concept, we demonstrate a four-step conversion of benzene to cyclohexene with varying degrees of deuterium incorporation, via binding to a tungsten complex. Using different combinations of deuterated and proteated acid and hydride reagents, the deuterated positions on the cyclohexene ring can be controlled precisely. In total, 52 unique stereoisotopomers of cyclohexene are available, in the form of ten different isotopologues. This concept can be extended to prepare discrete stereoisotopomers of functionalized cyclohexenes. Such systematic methods for the preparation of pharmacologically active compounds as discrete stereoisotopomers could improve the pharmacological and toxicological properties of drugs and provide mechanistic information related to their distribution and metabolism in the body.


Assuntos
Benzeno/química , Técnicas de Química Sintética , Cicloexenos/química , Cicloexenos/síntese química , Deutério/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/síntese química , Bases de Dados de Compostos Químicos , Cinética , Estrutura Molecular , Estereoisomerismo , Tetrabenazina/análogos & derivados , Tetrabenazina/síntese química , Tetrabenazina/química , Tungstênio/química
3.
Nat Chem ; 12(2): 159-164, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31767995

RESUMO

The extremely broad infrared spectrum of water in the OH stretching region is a manifestation of how profoundly a water molecule is distorted when embedded in its extended hydrogen-bonding network. Many effects contribute to this breadth in solution at room temperature, which raises the question as to what the spectrum of a single OH oscillator would be in the absence of thermal fluctuations and coupling to nearby OH groups. We report the intrinsic spectral responses of isolated OH oscillators embedded in two cold (~20 K), hydrogen-bonded water cages adopted by the Cs+·(HDO)(D2O)19 and D3O+·(HDO)(D2O)19 clusters. Most OH oscillators yield single, isolated features that occur with linewidths that increase approximately linearly with their redshifts. Oscillators near 3,400 cm-1, however, occur with a second feature, which indicates that OH stretch excitation of these molecules drives low-frequency, phonon-type motions of the cage. The excited state lifetimes inferred from the broadening are considered in the context of fluctuations in the local electric fields that are available even at low temperature.

4.
Proc Natl Acad Sci U S A ; 116(30): 14874-14880, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31278149

RESUMO

We exploit gas-phase cluster ion techniques to provide insight into the local interactions underlying divalent metal ion-driven changes in the spectra of carboxylic acids at the air-water interface. This information clarifies the experimental findings that the CO stretching bands of long-chain acids appear at very similar energies when the head group is deprotonated by high subphase pH or exposed to relatively high concentrations of Ca2+ metal ions. To this end, we report the evolution of the vibrational spectra of size-selected [Ca2+·RCO2-]+·(H2O) n=0to12 and RCO2-·(H2O) n=0to14 cluster ions toward the features observed at the air-water interface. Surprisingly, not only does stepwise hydration of the RCO2- anion and the [Ca2+·RCO2-]+ contact ion pair yield solvatochromic responses in opposite directions, but in both cases, the responses of the 2 (symmetric and asymmetric stretching) CO bands to hydration are opposite to each other. The result is that both CO bands evolve toward their interfacial asymptotes from opposite directions. Simulations of the [Ca2+·RCO2-]+·(H2O) n clusters indicate that the metal ion remains directly bound to the head group in a contact ion pair motif as the asymmetric CO stretch converges at the interfacial value by n = 12. This establishes that direct metal complexation or deprotonation can account for the interfacial behavior. We discuss these effects in the context of a model that invokes the water network-dependent local electric field along the C-C bond that connects the head group to the hydrocarbon tail as the key microscopic parameter that is correlated with the observed trends.

5.
Science ; 364(6437): 275-278, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31000660

RESUMO

The diffuse vibrational envelope displayed by water precludes direct observation of how different hydrogen-bond topologies dictate the spectral response of individual hydroxy group (OH) oscillators. Using cold, isotopically labeled cluster ions, we report the spectral signatures of a single, intact water (H2O) molecule embedded at various sites in the clathrate-like cage structure adopted by the Cs+·(D2O)20 ion. These patterns reveal the site-dependent correlation between the frequencies of the two OH groups on the same water molecule and establish that the bound OH companion of the free OH group exclusively accounts for bands in the lower-energy region of the spectrum. The observed multiplet structures reveal the homogeneous linewidths of the fundamentals and quantify the anharmonic contributions arising from coupling to both the intramolecular bending and intermolecular soft modes.

6.
J Phys Chem A ; 122(48): 9275-9284, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30351101

RESUMO

We report vibrational spectra of the cryogenically cooled H9O4+ cation along with those of the D2 tagged HD8O4+ isotopomers using two variations on a two-color, IR-IR double-resonance photoexcitation scheme. The spectrum of the isolated H9O4+ ion consists of two sharp features in the OH stretching region that indicate exclusive formation of the "Eigen" cation, the H3O+·(H2O)3 isomer that corresponds to the filled hydration shell around the hydronium ion. Consistent with this structural assignment, the spectrum of the HD8O4+ isotopologue is resolved into contributions from two isotopomers: one with the single OH group on one of the three solvent water molecules and another in which it resides on the hydronium core ion. The latter spectrum is dominated by a broad feature assigned to the isolated hydronium OH stretching fundamental with an envelope that is similar to that displayed by the H3O+·(H2O)3 isotopologue. The feature appears with a diffuse band ∼380 cm-1 above it, which is assigned to a combination band involving the hydronium OH stretching vibration and the frustrated translation mode of the HD2O+ core and one of the solvating water molecules. These trends are analyzed with anharmonic calculations involving four-mode coupling on a realistic potential surface and interpreted in the context of vibrationally adiabatic potentials based on insights acquired from analysis of the ground state probability amplitudes obtained from diffusion Monte Carlo calculations.

7.
J Phys Chem Lett ; 9(13): 3744-3750, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29924622

RESUMO

We describe a two-color, isotopomer-selective infrared-infrared population-labeling method that can monitor very slow spectral diffusion of OH oscillators in H-bonded networks and apply it to the I-·(HDO)·(D2O) and I-·(H2O)·(D2O) systems, which are cryogenically cooled and D2-tagged at an ion trap temperature of 15 K. These measurements reveal very large (>400 cm-1), spontaneous spectral shifts despite the fact that the predissociation spectra in the OH stretching region of both isotopologues are sharp and readily assigned to four fundamentals of largely decoupled OH oscillators held in a cyclic H-bonded network. This spectral diffusion is not observed in the untagged isotopologues of the dihydrate clusters that are generated under the same source conditions but does become apparent at about 75 K. These results are discussed in the context of the large-amplitude "jump" mechanism for H-bond relaxation dynamics advanced by Laage and Hynes in an experimental scenario where rare events can be captured by following the migration of OH groups among the four available positions in the quasi-rigid equilibrium structure.

8.
J Phys Chem Lett ; 9(11): 2979-2984, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29750531

RESUMO

We address the competition between intermolecular forces underlying the recent observation that ionic liquids (ILs) with a hydroxyl-functionalized cation can form domains with attractive interactions between the nominally repulsive positively charged constituents. Here we show that this behavior is present even in the isolated ternary (HEMIm+)2NTf2- complex (HEMIm+ = 1-(2-hydroxyethyl)-3-methylimidazolium) cooled to about 35 K in a photodissociation mass spectrometer. Of the three isomers isolated by double resonance techniques, one is identified to exhibit direct contact between the cations. This linkage involves a cooperative H-bond wherein the OH group on one cation binds to the OH group on the other, which then attaches to the basic N atom of the anion. Formation of this motif comes at the expense of the usually dominant interaction of the acidic C(2)H group on the Im ring with molecular anions, as evidenced by isomer-dependent shifts in the C(2)H vibrational fundamentals.

9.
J Phys Chem Lett ; 8(19): 4710-4715, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28898581

RESUMO

The heterogeneous reaction of N2O5 with sea spray aerosols yields the ClNO2 molecule, which is postulated to occur through water-mediated charge separation into NO3- and NO2+ ions followed by association with Cl-. Here we address an alternative mechanism where the attack by a halide ion can yield XNO2 by direct insertion in the presence of water. This was accomplished by reacting X-(D2O)n (X = Cl, Br, I) cluster ions with N2O5 to produce ions with stoichiometry [XN2O5]-. These species were cooled in a 20 K ion trap and structurally characterized by vibrational spectroscopy using the D2 messenger tagging technique. Analysis of the resulting band patterns with DFT calculations indicates that they all correspond to exit channel ion-molecule complexes based on the association of NO3- with XNO2, with the NO3- constituent increasingly perturbed in the order I > Br > Cl. These results establish that XNO2 can be generated even when more exoergic reaction pathways involving hydrolysis are available and demonstrate the role of the intermediate [XN2O5]- in the formation of XNO2.

10.
J Phys Chem Lett ; 8(16): 3782-3789, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28737922

RESUMO

Vibrational spectroscopy of the protonated water trimer provides a stringent constraint on the details of the potential energy surface (PES) and vibrational dynamics governing excess proton motion far from equilibrium. Here we report the linear spectrum of the cold, bare H+(H2O)3 ion using a two-color, IR-IR photofragmentation technique and follow the evolution of the bands with increasing ion trap temperature. The key low-energy features are insensitive to both D2 tagging and internal energy. The D2-tagged D+(D2O)3 spectrum is reported for the first time, and the isotope dependence of the band pattern is surprisingly complex. These spectra are reproduced by large-scale vibrational configuration interaction calculations based on a new full-dimensional PES, which treat the anharmonic effects arising from large amplitude motion. The results indicate such extensive mode mixing in both isotopologues that one should be cautious about assigning even the strongest features to particular motions, especially for the absorptions that occur close to the intramolecular bending mode of the water molecule.

11.
J Phys Chem Lett ; 8(2): 484-488, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28060510

RESUMO

We explore the intramolecular distortions present in divalent metal ion-carboxylate ion pairs using vibrational spectroscopy of the cryogenically cooled, mass-selected species isolated in the gas phase. The spectral signatures of the C-O stretching modes are identified using the perdeutero isotopologues of the acetate and propionate anions to avoid congestion arising from the CH2 fundamentals. Both Ca2+ and Mg2+ are observed to bind in a symmetrical, so-called "bidentate" arrangement to the -CO2¯ group. The very strong deformations of the head groups displayed by the binary complexes dramatically relax when either neutral water molecules or counterions are attached to the Mg2+RCO2¯ cation. These results emphasize the critical role that local coordination plays when using the RCO2¯ bands to deduce the metal ion complexation motif in condensed media.

12.
J Phys Chem A ; 119(30): 8294-302, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26132705

RESUMO

Elucidation of the molecular-level mechanics underlying the dissolution of salts is one of the long-standing, fundamental problems in electrolyte chemistry. Here we follow the incremental structural changes that occur when water molecules are sequentially added to the ternary [MgSO4Mg](2+) ionic assembly using cryogenic vibrational predissociation spectroscopy of the cold, mass-selected [MgSO4Mg(H2O)n=4-11](2+) cluster ions. Although the bare [MgSO4Mg](2+) ion could not be prepared experimentally, its calculated minimum energy structure corresponds to a configuration where the two Mg(2+) ions attach on opposite sides of the central SO4(2-) ion in a bifurcated fashion to yield a D2d symmetry arrangement. Analysis of the observed spectral patterns indicate that water molecules preferentially attach to the flanking Mg(2+) ions for the n ≤ 7 hydrates, which results in an incremental weakening of the interaction between the ions. Water molecules begin to interact with the sequestered SO4(2-) anion promptly at n = 8, where changes in the band pattern clearly demonstrate that the intrinsic bifurcated binding motif among the ions evolves into quasilinear Mg(2+)-O-S arrangements as water molecules H-bond to the now free SO groups. Although condensed-phase MgSO4 occurs with a stable hexahydrate in which water molecules lie between the ion pairs, addition of a sixth water molecule to one of the Mg(2+) ions in the n = 11 cluster occurs with the onset of the second hydration shell such that the cation remains coordinated to one of the SO4(2-) oxygen atoms.

13.
J Phys Chem A ; 119(18): 4170-6, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25867931

RESUMO

To explore the extent of the molecular cation perturbation induced by complexation with He atoms required for the application of cryogenic ion vibrational predissociation (CIVP) spectroscopy, we compare the spectra of a bare NH4(+)(H2O) ion (obtained using infrared multiple photon dissociation (IRMPD)) with the one-photon CIVP spectra of the NH4(+)(H2O)·He1-3 clusters. Not only are the vibrational band origins minimally perturbed, but the rotational fine structures on the NH and OH asymmetric stretching vibrations, which arise from the free internal rotation of the -OH2 and -NH3 groups, also remain intact in the adducts. To establish the location and the quantum mechanical delocalization of the He atoms, we carried out diffusion Monte Carlo (DMC) calculations of the vibrational zero point wave function, which indicate that the barriers between the three equivalent minima for the He attachment are so small that the He atom wave function is delocalized over the entire -NH3 rotor, effectively restoring C3 symmetry for the embedded -NH3 group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...